
IJSRSET162144 | Received: 15 January 2016 | Accepted: 22 January 2016 | January-February 2016 [(2)1: 148-152]

© 2016 IJSRSET | Volume 2 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

148

SCTP Reform for Receiver Organized Fractional Dependability

Ashish Parejiya1*, Dr. V. K. Chaubey2, Dr. Vinod Desai3
1,2Department of Computer Science and Engineering,. Mewar University, Rajasthan, India

3Computer Science Departments, Govt. Science College, Navsari, Gujarat, India

ABSTRACT

Stream Control Transmission Protocol (SCTP) was introducing to overcome several limitations of the Transmission

Control Protocol (TCP). SCTP has been investigated for its real-time data streaming capabilities. Extensions and

modifications to SCTP have been proposed, which take advantage of the reliability features. This paper proposes a

partial-reliable modification to SCTP, which reduce the overhead when compared to other partial-reliable extensions

(i.e. PR-SCTP). Description of the extension and simulations are discussed. Also a comparison is made between

our proposed extension, PR-SCTP, and UDP.

Keywords: SCTP, Partial Reliability, Real-Time Streaming

I. INTRODUCTION

Stream Control Transmission Protocol [1] is a transport

protocol proposed by IETF in October 2000. It provides

reliable transport service such as acknowledged, error-

free, non-duplicated, and sequenced transfer of user data

on top of a connectionless packet network such as IP.

Reference [2] explains the limitations of TCP that SCTP

overcomes. Fault tolerance was added with multi-

homing, which allows one association to contain

multiple paths to the destination. With the introduction

of multi-streaming, the dreaded head-of-line blocking

can be reduced. Multi-streaming allows an association to

contain reliable and unreliable streams. Important data

such as control messages can be sent on reliable streams

while unimportant data is sent on unreliable streams.

This paper proposes to give the receiver application the

ability to tell the sender that it no longer requires packets

even if they have not been received. This is important in

real-time streamed data transfer in which receiving

timely data is more important than receiving all of the

data. By adding this real-time data transport can benefit

from the reliable transmission of control messages and

unreliable real-time transport of data without the

necessity of multiple connections (associations). By

allowing the receiver to ignore stale messages the sender

can continue to send up-to-date, relevant messages that

can be used by the receiver, rather than be discarded.

This method can work harmoniously with TCP, since

the congestion control schemes in SCTP are TCP-

friendly.

Presently for real-time data streaming, UDP is the most

prevalent transport layer protocol used. The problem

with using UDP is that its delivery is only best effort and

congestion or flow control must be done using

proprietary methods at the application layer. This forces

the application to create flow control on its layer. Not

only does this add to the complexity of the application, it

creates additional time and cost in development.

Another drawback to using UDP and these proprietary

methods is that they are not necessarily TCP-friendly.

TCP is based on fairness, which only works when all

nodes on the network are using the same congestion

control scheme. Without fairness, those more aggressive

users become allocated more of the available bandwidth,

thus bogging down the majority of users. While this may

be beneficial to the unfair user in the short term, long

term costs in terms of service costs, etc. can catch up to

the user.

TCP is not generally used for real time data transport

such as streaming audio and video. What makes TCP

perfect for some applications, such as the transport of

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

149

files, makes it a poor choice for real time streamed data.

TCP’s ability to reliably deliver in-order data cost at a

cost. Problems such as head-of-line blocking, in which

received data cannot be sent to the application layer

because prior data is still outstanding are the reason TCP

is not chosen for this application. TCP’s methods for

avoiding congestion can lead to a wide variation in the

delay experienced by packets.

Another attractive characteristic of SCTP as opposed to

TCP is the message oriented aspect of SCTP. TCP’s

byte stream forces the application to do the message

framing.

SCTP can provide the best of these two transport

protocols, but it still has its drawbacks. Per stream head-

of-line blocking can still occur on ordered data. SCTP’s

reliability, like that of TCP hinders its usefulness as a

real-time transport layer.

There is an RFC (3758) that proposes an extension to

SCTP that allows for partial reliability [3], but it only

allows the sending host to advance the transmission

sequence number (TSN) of the receiver, thereby telling

the receiver to ignore missing packets up to the

transmitted TSN. [4] shows how partial reliability can

work for real-time streaming communication.

This sender-side flow control has its drawbacks. For

one, it requires a new chunk to specify the packet is to

be forwarded. While the construction of this chunk is

done in such a way that it is compatible with versions of

SCTP that do not implement it, those implementations

cannot benefit from the extension. Another drawback of

this new chunk is the required overhead of sending this

additional chunk.

Our method could work together with this method or

separately. Theoretically, this paper’s method would

introduce less overhead than that proposed in RFC 3758

in that we could simply send acknowledgements for data

that has timed out whether it has been received of not.

This would generate network traffic that would be the

equivalent to actually receiving the data. It appears to

the sender a an ordinary SACK or delayed SACK. This

allows compatibility with non-RPR-SCTP hosts without

any loss of functionality of the extension. The receiver

partial reliability extension is also fully compatible with

the PR-SCTP extension and can be used in harmony

with it to allow both end points to advance the

cumulative TSN of the receiver.

One drawback of RPR-SCTP is that it requires the

application to be aware of its presence to some degree.

One possible way to get around this is when the

application requests data that has not yet been received;

this can act as a forward TSN. This could alleviate most

knowledge that the application would need and could be

setup when the association is created through the setting

of a few parameters.

II. METHODS AND MATERIAL

A. Proposed Modification

RPR-SCTP (receiver partial-reliable SCTP) gives the

receiver application the ability to acknowledge missing

data in order to receive new data from the sender. The

modification is implemented only on the receiver side.

This is much like a SACK but the gaps in the TSN are

artificially filled in to prevent retransmissions and keep

fresh data flowing through the link.

An SCTP module for Network Simulator 2 (ns-2) is

used for the modifications. The new RPR-SCTP module

is actually a child of the SCTP module. The module

relies on the application layer to determine if a forward

acknowledgment is needed. The receiver application is

designed to consume data similar to a real-time

application. This application creates and monitors a

circular buffer for data consumption. As the circular

buffer is depleted, the application asks the transport

layer for new data. The RPR-SCTP module will

generate an acknowledgment that tells the sender to send

the newest data.

B. Model Implementation

The RPR-SCTP class model in ns-2 is a derived class of

the existing PR-SCTP model. It was decided that this

was the best way to model RPR-SCTP since the SCTP

class itself is very complicated. This was part of the

reasoning behind choosing ns-2[6] [7] [8] over

MLDesigner. The existing PR-SCTP allows optional

partial reliability on a per-stream basis. The

implementation of partial reliability allows the

application or user to specify how many retransmissions

are allowed when a SACK is received that has a gap for

a given TSN. This number can be set to zero, in which

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

150

case the sender, upon receiving a SACK with a gap in it,

simply sends a forward TSN chunk to the receiver and

continues transmitting as if all the TSNs up to and

including the TSN in the forward chunk have been

received.

This extension of the SCTP Agent class modifies the

underlying class only slightly. The existing class did not

have a method for passing received data to the

application layer. This is not totally unique to our

extension, but it was necessary in order for the

application to consume data that was sent across the link,

from the transport layer.

Second, a method was added to allow the application to

request data when no more was available. This signals

the transport layer to increment its cumulative selective

acknowledge point is possible and send this

acknowledgment to the sending node. This makes the

sender think that the data has been received, whether it

has or not, and it behaves as if the data had been

successfully received.

This implementation differs from UDP in that it does not

totally go out of control when it starts sending. The

SCTP rules for flow control still apply and the sender

uses acknowledgements to clock its transmissions.

III. RESULTS AND DISCUSSION

A. Simulator

Ns-2 [4] was used because it has an implemented SCTP

[9][10][11] module from which the modifications were

made. The PR-SCTP extension is also implemented in

the SCTP module.

This is a powerful simulator that uses the OTcl event-

driven scripting language. The modules and most

applications are created in C++. Ns-2 has a steep

learning curve; however, the benefits [6][7][8] of this

simulator are evident with its fast simulation time and

the support of the open source community. Being able

to see the source code for the modules was invaluable in

creating and debugging our own module.

The network setup that was used is simple and in no way

does it attempt to simulate a working network. What it

does do it create scenarios that could occur in a real

network with multiple nodes and their associated

congestion.

B. Simulation Scenarios

Our network setup is simply a sending node, a receiving

node, and a link. The sending node has an application to

send a steady stream of data to the receiver. The

receiver has an application associated with it that

consumes the arriving data at a constant rate from

internal buffer that it maintains. When the buffer goes

below a certain threshold it requests additional data from

the transport layer. The link is configurable to set the

bandwidth, delay, queuing method (drop tail, red, etc.),

and loss model. The loss model can be tailored to drop

certain packets from a list or use various statistical

models to mimic behavior in a network.

All the scenarios consist of a source node and a

destination node linked by a single line. Several

different transport-layer modules are attached to these

nodes for each scenario. Comparisons between RPR-

SCTP, SCTP with the partial reliability extension and

UDP are made. An example of this scenario is

presented in Figure 1.

Figure 1 : Simulation Scenario

C. Results

In this section we will present a scenario where two

packets are dropped and view its effects on the

throughput of the link. This thus effects the average

delay that is seen, a key factor for real-time data

transmission.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

151

In

Figure 2, a network trace of PR-SCTP[9][10][11] is

presented. In this scenario a packet was forced to be

dropped twice in order to illustrate the one

retransmission limit.

Figure 2 : PR-SCTP trace, 1 retransmission

In Figure 3, the case of a maximum of 2 retransmissions

I exercised. It can be seen that the packet is successfully

retransmitted the second time. This has a very negative

effect, however, on the delay.

Figure 3 : PR-SCTP, 2 retransmissions

In Figure 4, the zero retransmission case is tested. It can

be seen that the delay is improved from the other cases.

Figure 4 : PR-SCTP, 0 retransmissions

In Figure 5, the RPR-SCTP module is used. In this case

the cumulative acknowledgment is simply incremented

and the packet is never requested a second time. This

has the best delay.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

152

Figure 5 : RPR-SCTP

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

153

IV. CONCLUSION

A conclusion section is not required. Although a

conclusion may review the main points of the paper, do

not replicate the abstract as the conclusion. A conclusion

might elaborate on the importance of the work or

suggest applications and extensions.

V. REFERENCES

[1] Stewart and Q. Xie et. al., “Stream Control

Transmission Protocol.” IETF RFC 2960. October

2000.

[2] S. Fu and M. Atiquzzaman. “SCTP: state of the art

in research, products, and technical challenges.”

Computer Communications. pp. 85-91. October

2003.

[3] R. Stewart, M. Ramalho, Q. Xie, and P. Conral,

“SCTP Partial Reliability Extension.” draft-

stewart-tsvwg-prsctp-01.txt. July 2002.

[4] H. Wang, Y. Jin, W. Wang, J. Ma, and D. Zhang,

“The performance of PRSCTP, TCP, and UDP for

MPEG-4 multimedia traffic in mobile network.”

International Conference on Communication

Technology. pp. 414-419. April 2003.

[5] K. Fall and K. Varadnam, “The ns Manual.”

December 2003. [Online] Available:

http://www.isi.edu/nsnam/ns/ns-documentation

[6] Ashish Parejiya, Dr. Vinod Desai, "Congestion

Control for Streaming Data Broadcasting over

Internet", IJMTER Vol.1 Issue. 5, pg. 352 to 362,

Novmber 2014, E-ISSN. 2349-9745,

http://www.ijmter.com

[7] Ashish Parejiya, Dr. Vinod Desai, "A

Comparative Study and Survey on Broadcasting

Multimedia Streaming Data Congestion Control

Mechanisms", IJCSMC, Vol. 3, Issue. 12,

December 2014, pg.567 – 573, E-ISSN. 2320–

088X, http://www.ijcsmc.com

[8] Ashish Parejiya, Dr. Vinod Desai, "Multicasting

Of Adaptively-Encoded MPEG4 Over Qos-

Cognizant IP Networks",IJMTER Vol.2 Issue. 1,

pg. 563 to 570, January 2015, E-ISSN. 2349-9745,

http://www.ijmter.com/

[9] Ashish Parejiya, Dr. Vinod Desai "Transforming

Network Coding with TCP for Broadcasting

Streaming Data in Multi-Hop Wireless LAN",

IJESRT, Vol. 4, Issue. 2, February 2015, E-ISSN.

2277-9655, http://www.ijesrt.com

[10] Ashish Parejiya, Dr. Vinod Desai, "MULTI-

PATH MECHANISM FOR BROADCASTING

AUDIO / VIDEO STREAMING BASED ON

BANDWIDTH ESTIMATION", IJESRT, Vol. 4,

Issue. 5, May 2015, E-ISSN. 2277-9655,

http://www.ijesrt.com

[11] Ashish Parejiya, Dr. Vinod L Desai, & Dr. V. K.

Chaubey. (2016). STREAMING APPLICATION

QOS: CONTROLLING CONGESTION VIDEO

STREAMING MEDIA DATA QUALITY

THROUGH SENDING THE FINEST DATA

PACKAGE SUBSEQUENT. International Journal

of Advance Research and Innovative Ideas in

Education, Volume 2 Issue 1 2016 Page 174-183

E-ISSN. 2395-4395,http://www.ijariie.com

